Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper advances machine learning (ML)-based streamflow prediction by strategically selecting rainfall events, introducing a new loss function, and addressing rainfall forecast uncertainties. Focusing on the Iowa River Basin, we applied the stochastic storm transposition (SST) method to create realistic rainfall events, which were input into a hydrological model to generate corresponding streamflow data for training and testing deterministic and probabilistic ML models. Long short-term memory (LSTM) networks were employed to predict streamflow up to 12 h ahead. An active learning approach was used to identify the most informative rainfall events, reducing data generation effort. Additionally, we introduced a novel asymmetric peak loss function to improve peak streamflow prediction accuracy. Incorporating rainfall forecast uncertainties, our probabilistic LSTM model provided uncertainty quantification for streamflow predictions. Performance evaluation using different metrics improved the accuracy and reliability of our models. These contributions enhance flood forecasting and decision-making while significantly reducing computational time and costs.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Floods are among the most destructive natural hazards, with damages expected to intensify under climate change and socio-economic pressures. Effective reservoir operation remains a critical yet challenging strategy for mitigating downstream impacts, as operators must navigate nonlinear system dynamics, uncertain inflow forecasts, and trade-offs between competing objectives. This study proposes a novel end-to-end data-driven framework that integrates process-based hydraulic simulations, a Transformer-based surrogate model for flood damage prediction, and reinforcement learning (RL) for reservoir gate operation optimization. The framework is demonstrated using the Coralville Reservoir (Iowa, USA) and two major historical flood events (2008 and 2013). Hydraulic and impact simulations with HEC-RAS and HEC-FIA were used to generate training data, enabling the development of a Transformer model that accurately predicts time-varying flood damages. This surrogate is coupled with a Transformer-enhanced Deep Q-Network (DQN) to derive adaptive gate operation strategies. Results show that the RL-derived optimal policy reduces both peak and time-integrated damages compared to expert and zero-opening benchmarks, while maintaining smooth and feasible operations. Comparative analysis with a genetic algorithm (GA) highlights the robustness of the RL framework, particularly its ability to generalize across uncertain inflows and varying initial storage conditions. Importantly, the adaptive RL policy trained on perturbed synthetic inflows transferred effectively to the hydrologically distinct 2013 event, and fine-tuning achieved near-identical performance to the event-specific optimal policy. These findings highlight the capability of the proposed framework to provide adaptive, transferable, and computationally efficient tools for flood-resilient reservoir operation.more » « lessFree, publicly-accessible full text available October 1, 2026
-
na (Ed.)Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance crop productivity with environmental impact, particularly N2O emissions. By modeling agricultural decision-making as a partially observable Markov decision process (POMDP), the framework accounts for uncertainties in environmental conditions and observational data. The approach integrates deep Q-learning with recurrent neural networks (RNNs) to train adaptive agents within a simulated farming environment. A Probabilistic Deep Learning (PDL) model was developed to estimate N2O emissions, achieving a high Prediction Interval Coverage Probability (PICP) of 0.937 within a 95% confidence interval on the available dataset. While the PDL model’s generalizability is currently constrained by the limited observational data, the RL framework itself is designed for broad applicability, capable of extending to diverse agricultural practices and environmental conditions. Results demonstrate that RL agents reduce N2O emissions without compromising yields, even under climatic variability. The framework’s flexibility allows for future integration of expanded datasets or alternative emission models, ensuring scalability as more field data becomes available. This work highlights the potential of artificial intelligence to advance climate-smart agriculture by simultaneously addressing productivity and sustainability goals in dynamic real-world settings.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available May 5, 2026
An official website of the United States government
